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minutes. Figure 2 shows a general shape of the free surface obtained by computing the 

wave profile along nine arbitrary sections. It shows the contour lines spaced at O.o4v-1 
intervals and we see from it that the wave pattern behind a moving ellipsoid is much 

more complex than one would expect from the asymptotic theory. 
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The onset of convection in a layer of an incompressible fluid with free bounda- 
ries is considered. The temperature at the layer boundaries, the density of the 
internal heat sources and the strength of the gravity field are all assumed to be 

T -periodic. The existence of the critical Rayleigh number and the T -period- 
icity of the neutral perturbation are proved for the case when the unperturbed 
temperature gradient is negative throughout the layer. These results are obtained 
by reducing the linearized problem to an ordinary differential equation in certain 
Banach space and applying the theory of the linear positive operators [ll. 

The onset of convection under the action of time-periodic forces is dealt with 
in & - 91. The stability of equilibrium of a horizontal layer with free and rigid 
boundaries was investigated and numerical methods were used to determine the 
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limits of stability p] under the assumption that the temperature gradient was 
independent of the vertical coordinate. The method of averaging over small osc- 

illations was used in [3, 41 to study the influence of high frequency vertical osci- 
llations on the onset of convection. Use of the method of averaging for the ab- 

stract parabolic equations. in particular for the convection problem, was substan- 
tiated in [5, 61. Convection in a cavity of square cross section in the case when 
the fluid is heated from below and is acted upon by vibrational forces, is studied 

in n] and a numerical solution given for the nonlinear convection equations. The 
stability of equilibrium in the case when the temperature gradient depends on the 

vertical coordinate is studied in [8, 91, namely the convection in a deep vessel 
the surface temperature in which varies periodically with time is dealt with in 
[8], and the convection in a horizontal layer with the temperature varying period- 
ically at the free boundaries, the amplitude of the modulations being small, in 

PI. 

In the present paper we consider the onset of convection in a horizontal layer of a vis- 
cous incompressible fluid bounded by the surfaces z = 0 and h. The density of distribut- 
ion of the heat sources within the layer is aF (z, t). The temperature at the horizontal 
boundaries is given and varies as a~ (z, t). The fluid layer executes vertical oscillations 

with the acceleration equal to glQ,(t) -11. 
We assume the functions F, Q and ‘p to be smooth and T -periodic in t . We also 

assume that the relative velocity of motion of the fluid v’ and the temperature 6’ are 

periodic in x and y their respective periods equal to 2n I a, and 2~ / a2 and that the 
fluid layer cannot be displaced as a whole along the x, y-plane. 

n/a2 1 np, 1 

s s 
vx’dydz = 

s s 
vy’dxdz = 0 

-n/12 0 --n/a, 0 

We further consider the stability of the state of rest during which 

vo’ = 0, 00’ = a& (z, t), PO’ = 3ga@ (t) \ 0odz + 9 (t) (1) 
0 

where 9(t) is an arbitrary function of time. The function $(t) can be determined uniqu- 

ely, it tne value of the pressure is known at any one point for all t. 
The equilibrium temperature 6, can be found from the following problem: 

$ = x s + F (z, t) 

e lZZ” = ‘p (0, t), 0 lZZ1 = cp (1, 4, 0 (z, t) = 0 (zt t + T) 

where we assume that F and ‘p are infinitely differentiable functions. In this case 

&(z, t) exhibits the same property. 
In the dimensionless coordinates, the linearized equations describing small perturba- 

tions of equilibrium assume the following form 
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where Ra and p are the Rayleigh and Prandtl numbers am j is the unit vector directed 
vertically upwards. The conditions for the corresponding integrals to be periodic in z 

and Y and to be equal to zero, remain unchanged. We seek the solution of (2) in the 
form V x= v,(z* t)sinkrais cosk,a,y (31 

ur, = z’Jz, t)cosk,a,r sink20& 

(vZ ,o,P) = (zc(z, t), r(z, 0, q(z, t))eoak,%~ cos k&y 
where k, and k2 are natural numbers. 

Inserting (3) into (0) and eliminating the velocity components ZQ and Q and the pre- 
ssure q, we obtain the following system of equations for w and ‘C : 

( ;- I/PLj Lw ==-RHaZ I/$D((t)z, c (z. t) 

= R l/p w 14) 

L = @/a22 - CC, 

The boundary conditions at the free edge of the layer are 

w = a2w 1 i)9 = 0, t = 0 (z = 0,l) (5) 

Theorem: Let cD(t) > 0 and c(z, t) > 0 for all z E 10, I], t > O.Then a critical 
Rayleigh number Ra, exists such that whenR > If/Ra. the state of rest (1) is unstable 

and the problem (4) and (5) has a nonzero solution 

w = e”5i (z, t), z = e.“‘-c(z, t) (‘3) 
where u > 0 and the functions w and < are T-periodic in t . 

Proof. let G be the Green operator of the differential operator L with the boundary 
conditions w(O) = w(I) = 0. Using the operator G we obtain 

! & qw=Ilcr’ T/pa?(t)Gz, (&+L)r=R~w 
P 

w I;+ I= r I2=D, I= 0 (7) 

Let us introduce the space E = L,(O, 1) f L,(O, I), p > 1 consisting of a simple sum 
of two spaces LP. The pair F, = (w, 2) represents an element of space E and its norm 
is given by 

II 4 IIE = II 10 III+ + II r IILpV 4 = (u,, T) 

We shall treat the system (7) as a differential equation in E 

(8) 

Let us find the displacement operator CT(t) along the trajectories of the differential equ- 
ation (8) over the time 0 < t -< T [lo], assuming that E(t) = ?Y(t)g (0). We shall consider 
a cone K of the following nonnegative vector functions in E : 5 = (w, 7) E K when and 

only when W(Z) and r(z) > 0 for z E 10, I]. Then the cone K is reproducing and normal 
[l]. The operator u(t) is positive with respect to K . This follows from the maximum 
principle for a second order parabolic equation [ 111 and from-the positiveness of the 
operator C. We shall show that the monodromy operator UT = U(T) has in K an eigen- 
vector with a corresponding positive and simple eigenvalue p. 

First we consider the following homogeneous equation 
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af -- LLf co, at VP I Lo,~=o 

Its solution satisfying the initial condition f(z, 0) = f. E D(L) is [ 191 

l(l) = Wfo 

where V(t) is a semigroup of linear bounded operators in L, (0, 1) , strongly continuous 
for t > 0 . 

The problem (8) can be written as 

E(t) = 5 + R(BS)(& E = (WV r) (9) 

bl(t)Sn=Iy$;,““I), (BE)(t)= :‘I’v(pt+;@;;;;;ds 

v(t- , 

0 

where 5s = (~0, rO) denotes the initial value. The integrals in (9) should be understood 
as the limits on the norm of the corresponding Riemannian integral sums. 

We write the monodromy operator U, in the form 

UT& = ; RLC,Eo = ; RkBkS jtGT (10) 

k=O k=o 

The series in (10) converges uniformly on any sphere in h’. We shall show that the opera- 
tor U, is completely continuous in E by establishing that every term in (10) is a comp- 
letely continuous operator. The operator V(t) is completely continuous in L, for any 

fixed t > 0 , consequently the operator C, = A(T) is completely continuous in E. 

Let us consider the operators B, 
T-E 

B, = 
s 

V(T - s) A (s) ds 

0 

The operators B, are completely continuous in E. This follows from the complete con- 
tinuity, for any fixed s of the operator appearing under the integral sign and from the 
convergence on the norm of the Riemannian integral sums [13]. When e -_) 9 , the op- 
erators B, converge uniformly to the operator C,,and this implies the complete contin- 

uity of the latter. 
Complete continuity of the operator C, follows from the complete continuity of G 

in L, and from the equation 

Czf, = (azGH,w,, a2GH,r,) 

where Hr and H, are bounded operators. 
The complete continuity of the operators Ck(k = 3,4 ,...) is proved similarly. From 

(10) we can now deduce that the operator U, is completely continuous. We shall show 
that this operator is no-positive with respect to the cone K when no = (To, TO) and 
cpo(z) = sinnz is the eigenfunction of the operator G corresponding to the smallest eigen- 

value 1\ = nz + a2. 
As we know, the operator V(t) is ‘p. -positive with respect to the cone KO of non- 

negative functions, and the following relations hold: 
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By the condition of the theorem constants ml, m,, n,, na exist such, that the following 
inequalities hold 

mi < @ < mz, n1< c Q m, z E to, 11, t E [O* Tl w 

To show that the operator U, is q,-bounded from below we note that for any Ea = 
= (%I* z,) E K we have 

~,EQ > RX ItcT = 03) 

‘R icz2 1/j 1’ V (pT 

T 
1 = -s) @ (s) GV (s)zods, - 

s v/p n 
v (T - s) c (s) v (ps) tiYd8) 

0 

This follows from (10) and from the positiveness of the operators A and B. The relation 

can be checked directly. 
From (11) - (14) we can derive the following estimate 

U&o > RMr (60) %, VI = (cpo, cpo) 

T T 

Ml (50) = min ct2ml v/p 

h J 
’ e- h vi (T-@ b (f,,, ps) ds, -!% e -h/ 6 O--s) b (wo, s) ds 

0 

We can prove that the operator U, is rl,,-bounded from above by obtaining from (9), 

(11) and (14) 
r_J,~~, < 1112 (CA) 770 

T T 

,vlz (&) = RpSeYRT, 6 = max 
-u 

’ d (to, PS) ds, 
1 
‘4 to”, s) ds 

I 
0 0 

y = max (cG% l/j7 n2 I V/p} 

Thus we have shown that the operator UT is completely continuous and q. -positive 

with respect to the reproducing cone K. Theorems of [l] imply that U, has a unique 
eigenvector Eo’ = (wo’, 70’) in the cone K 

U&O = PEO’, p > RMI (qo) > 0 05) 

The positive multiplier p is simple and its absolute value exceeds those of the remain- 
ing eigenvalues. 

The estimate (15) implies that when R > R, = 1 / Ml (lo) the factor p > 1. The 

solution (6) can be obtained by setting g = hen’. We note that for t > 0 the solution 

(6) is infinitely differentiable. Indeed, when 1 > 0, the functions CD(~), c(s, t), v(t) ~0 

and V(t)t, are infinitely differentiable. The infinite differentiability of (6) now follows 
from (10) as the operator G: acts from L, into Wpz and from W’lf) into W$+“) for any 

p > 1. This completes the proof of the Theorem. 
It was shown before that the multiplier p of maximum absolute value is positive. 

From this an analog of the variation of stability principle follows: the value R,(a”) = 

= 1 / M,(qo) has a corresponding T-periodic solution (6) with c = 0. 
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Non-self-balanced homogeneous solutions of the mixed plane problem of elasti- 
city theory for and infinite wedge--a < 6 < a, 0 < r < 30, one part of whose 

boundary 6 = f CL, 0 Q r < 1 is under the conditi- 
ons of sliding constraint and the other is stress-free, 
are constructed and investigated. The solutions are of 

independent interest since they determined the state 
of stress of a wedge (a wedgelike strip in an elastic 
plane) on which a load equivalent to a longitudinal 
force P, a transverse force Q and a moment M (see 

Fig. 1) acts through a stiff yoke (a wedgelike stamp). 
Together with the statically balanced homogeneous 

solutions, they form a system of functions needed to 
solve mixed problems for elastic finite sectorial dom- 

by ains by the method elucidated in [l]. 

Fig. 1. 

1. Symmetric problem. Let us write the condition on the wedge boundary 
for 6 = j, a: 

Us,= 0 for 0 < r .< 1, 0s = 0 for 1< r < x 0.1) 

%-e = 0 for 0 -< r < 03 (1.2) 

60 _ (1 - r)E-l for r ----f 1 - 0 (e > 0) (1.3) 


